lava-oushudb-dt-sql-parser/README.md
2023-10-24 15:26:34 +08:00

9.0 KiB

dt-sql-parser

NPM version NPM downloads Chat

English | 简体中文

dt-sql-parser is a SQL Parser project built with ANTLR4, and it's mainly for the BigData domain. The ANTLR4 generated the basic Parser, Visitor, and Listener, so it's easy to complete the syntax validation, tokenizer, traverse the AST, and so on features.

Additionally, it provides auxiliary functions such as SQL splitting and Auto-Complete.

Supported SQL:

  • Generic SQL (MySQL)
  • Flink SQL
  • Spark SQL
  • Hive SQL
  • PL/SQL
  • PostgreSQL
  • Trino SQL

Supported auxiliary methods

SQL Type SQL Split Code-Completion
Generic SQL WIP WIP
Flink SQL
Spark SQL
Hive SQL
PL/SQL WIP WIP
Postgre SQL WIP WIP
Trino SQL

Tips: This project is the default for Javascript language, also you can try to compile it to other languages if you need.


Integrating SQL Parser with Monaco Editor

We have provided a monaco-sql-languages package, you can integrate with monaco-editor easily.


Installation

# use npm
npm i dt-sql-parser --save

# use yarn
yarn add dt-sql-parser

Usage

We recommend learning the Fundamentals usage before continuing. The dt-sql-parser library provides SQL Parser classes for different types of SQL.

import { GenericSQL, FlinkSQL, SparkSQL, HiveSQL, PLSQL, PostgresSQL, TrinoSQL } from 'dt-sql-parser';

Before employing syntax validation, code completion, and other features, it is necessary to instantiate the Parser of the relevant SQL type. For instance, one can consider using GenericSQL as an example:

const parser = new GenericSQL();

The following usage examples will utilize the GenericSQL, and the Parser for other SQL types will be employed in a similar manner as GenericSQL.

Syntax Validation

import GenericSQL from 'dt-sql-parser/dist/parser/generic';

const parser = new GenericSQL();

const correctSql = 'select id,name from user1;';
const errors = parser.validate(correctSql);
console.log(errors); 

Output:

/*
[]
*/

Validate failed:

const incorrectSql = 'selec id,name from user1;'
const errors = parser.validate(incorrectSql);
console.log(errors); 

Output:

/*
[
    {
        endCol: 5,
        endLine: 1,
        startCol: 0,
        startLine: 1,
        message: "mismatched input 'SELEC' expecting {<EOF>, 'ALTER', 'ANALYZE', 'CALL', 'CHANGE', 'CHECK', 'CREATE', 'DELETE', 'DESC', 'DESCRIBE', 'DROP', 'EXPLAIN', 'GET', 'GRANT', 'INSERT', 'KILL', 'LOAD', 'LOCK', 'OPTIMIZE', 'PURGE', 'RELEASE', 'RENAME', 'REPLACE', 'RESIGNAL', 'REVOKE', 'SELECT', 'SET', 'SHOW', 'SIGNAL', 'UNLOCK', 'UPDATE', 'USE', 'BEGIN', 'BINLOG', 'CACHE', 'CHECKSUM', 'COMMIT', 'DEALLOCATE', 'DO', 'FLUSH', 'HANDLER', 'HELP', 'INSTALL', 'PREPARE', 'REPAIR', 'RESET', 'ROLLBACK', 'SAVEPOINT', 'START', 'STOP', 'TRUNCATE', 'UNINSTALL', 'XA', 'EXECUTE', 'SHUTDOWN', '--', '(', ';'}"
    }
]
*/

We instanced a Parser object, and use the validate method to check the SQL syntax, if failed returns an array object includes error message.

Tokenizer

Get all tokens by the Parser:

import GenericSQL from 'dt-sql-parser/dist/parser/generic';

const parser = new GenericSQL()
const sql = 'select id,name,sex from user1;'
const tokens = parser.getAllTokens(sql)
console.log(tokens)
/*
[
    {
        channel: 0
        column: 0
        line: 1
        source: [SqlLexer, InputStream]
        start: 0
        stop: 5
        tokenIndex: -1
        type: 137
        _text: null
    },
    ...
]
*/

Visitor

Traverse the tree node by the Visitor:

import GenericSQL from 'dt-sql-parser/dist/parser/generic';
import { SqlParserVisitor } from 'dt-sql-parser/dist/parser/generic/SqlParserVisitor';

const parser = new GenericSQL()
const sql = `select id,name from user1;`
// parseTree
const tree = parser.parse(sql)
class MyVisitor extends SqlParserVisitor {
    // overwrite visitTableName
    visitTableName(ctx) {
        let tableName = ctx.getText().toLowerCase()
        console.log('TableName', tableName)
    }
    // overwrite visitSelectElements
    visitSelectElements(ctx) {
        let selectElements = ctx.getText().toLowerCase()
        console.log('SelectElements', selectElements)
    }
}
const visitor = new MyVisitor()
visitor.visit(tree)

/*
SelectElements id,name
TableName user1
*/

Tips: The node's method name can be found in the Visitor file under the corresponding SQL directory

Listener

Access the specified node in the AST by the Listener

import GenericSQL from 'dt-sql-parser/dist/parser/generic';
import { SqlParserListener } from 'dt-sql-parser/dist/parser/generic/SqlParserListener';

const parser = new GenericSQL();
const sql = 'select id,name from user1;'
// parseTree
const tree = parser.parse(sql)
class MyListener extends SqlParserListener {
    enterTableName(ctx) {
        let tableName = ctx.getText().toLowerCase()
        console.log('TableName', tableName)
    }
    enterSelectElements(ctx) {
        let selectElements = ctx.getText().toLowerCase()
        console.log('SelectElements', selectElements)
    }
}
const listenTableName = new MyListener();
parser.listen(listenTableName, tree);

/*
SelectElements id,name
TableName user1
*/

Tips: The node's method name can be found in the Listener file under the corresponding SQL directory

Splitting SQL statements

Take FlinkSQL as an example:

import { FlinkSQL } from 'dt-sql-parser';
const parser = new FlinkSQL();
const sql = 'SHOW TABLES;\nSELECT * FROM tb;';
const sqlSlices = parser.splitSQLByStatement(sql);
console.log(sqlSlices)

/*
[
    {
    startIndex: 0,
    endIndex: 11,
    startLine: 1,
    endLine: 1,
    startColumn: 1,
    endColumn: 12,
    text: 'SHOW TABLES;'
    },
    {
    startIndex: 13,
    endIndex: 29,
    startLine: 2,
    endLine: 2,
    startColumn: 1,
    endColumn: 17,
    text: 'SELECT * FROM tb;'
    }
]
*/

Code Completion

Obtaining autocomplete information at a specified position in SQL. We can refer to the example of using FlinkSQL.

Invoke the getSuggestionAtCaretPosition method, pass the SQL content and the row and column numbers indicating the position where auto-completion is desired.

  • keyword candidates list

    import { FlinkSQL } from 'dt-sql-parser';
    const parser = new FlinkSQL();
    const sql = 'CREATE ';
    const pos = { lineNumber: 1, column: 16 }; // the end position
    const keywords = parser.getSuggestionAtCaretPosition(sql, pos)?.keywords;
    console.log(keywords);
    
    /*
    [ 'CATALOG', 'FUNCTION', 'TEMPORARY', 'VIEW', 'DATABASE', 'TABLE' ] 
    */ 
    
  • Obtaining information related to grammar completion

    const parser = new FlinkSQL();
    const sql = 'SELECT * FROM tb';
    const pos = { lineNumber: 1, column: 16 }; // after 'tb'
    const syntaxSuggestions = parser.getSuggestionAtCaretPosition(sql, pos)?.syntax;
    console.log(syntaxSuggestions);
    
    /*
    [
      {
        syntaxContextType: 'table',
        wordRanges: [
          {
            text: 'tb',
            startIndex: 14,
            stopIndex: 15,
            line: 1,
            startColumn: 15,
            stopColumn: 16
          }
        ]
      },
      {
        syntaxContextType: 'view',
        wordRanges: [
          {
            text: 'tb',
            startIndex: 14,
            stopIndex: 15,
            line: 1,
            startColumn: 15,
            stopColumn: 16
          }
        ]
      }
    ]
    */
    

The grammar-related autocomplete information returns an array, where each item represents what grammar can be filled in at that position. For example, the output in the above example represents that the position can be filled with either a table name or a view name. In this case, syntaxContextType represents the type of grammar that can be completed, and wordRanges represents the content that has already been filled.

Other API

  • createLexer Create an instance of Antlr4 Lexer and return it;
  • createParser Create an instance of Antlr4 parser and return it;
  • parse Parses the input SQL and returns the parse tree;

License

MIT